
Who, What, Where, When,
Wordlist
@TomNomNom

What's a wordlist?
● It's… A list of words.
● Usually used for brute-forcing* something

*Yes I am using this term incorrectly (:

Why are they useful?
● We could check all the combinations
● That would take a really long time

○ >4 years to cover [a-zA-Z_-]{6} if you can somehow maintain 500 requests per second

● Wordlists exist to save time and resources :)

Yes I really am explaining what wordlists are.

Where can they be used?
● Subdomain enumeration
● Path guessing
● Authentication guessing
● API method guessing
● Parameter guessing
● Header guessing
● ...you get the point.

Don't worry, it's going to get better soon...

Pre-baked lists
● https://github.com/danielmiessler/SecLists

○ Well organised
○ Well-known for a reason :)

● https://github.com/google/fuzzing/tree/master/dictionaries
○ Google's fuzzing dictionaries
○ Need a bit of prep if they're not in the format you need

● Others:
○ https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
○ /usr/share/dict/words (:

● There's more scattered all over the internet…

You know how to use Google, right?

https://github.com/danielmiessler/SecLists
https://github.com/google/fuzzing/tree/master/dictionaries
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

So what's the problem?
● These wordlists are awesome
● They are genuinely useful
● But:

○ Everyone uses them
○ They're generally generic
○ They're often very large* (we're trying to save time and resources, remember?)

*Like me.

Custom lists
● You need custom wordlists if you want to find things others don't
● Every target has things specific to them

○ Generic wordlists probably won't contain TargetName_SuperHappyAPIDocs

● Specific use-cases call for specific wordlists
○ No point using a subdomain list when you're guessing headers*

*Well, probably anyway.

Manually curated
● My most used word-list was hand-writt^wtyped
● It's not very big
● But it's very useful
● I add to it when I read about something interesting

I'm sure you can figure this one out

Target-specific lists
● You will need:

○ A need
○ A source of data
○ A way to process the data
○ A way to use the wordlist

● Let's look at path-guessing as an example

No sticky-backed plastic required.

Getting path data
● We want lots of URLs for the target
● Your Burp Suite history is a good source

○ Target tab > Site map -> Right click a host -> 'Copy URLs in this host'

● Google dorks are handy but can be a bit tedious - I have a trick for that ;)
● gau (https://github.com/lc/gau) to get URLs from the Wayback Machine etc
● Sitemaps
● Remember to include paths from all of your target's domains!

○ Sometimes a boring path on one host is an interesting path on another :)

Running out of snarky comments, sorry.

https://github.com/lc/gau

Google dorking
● Demo time :)

Hope it goes OK!

Processing path data
● I like unfurl (: (https://github.com/tomnomnom/unfurl)

https://github.com/tomnomnom/unfurl

Extract all the parts
● Using complete paths can be fast, but it will miss things
● Pull the paths apart for greatest effect

○ Then re-combine them recursively :)

While we're here...
● Unfurl can extract lots of other things for you too

○ Query string keys and values, domains, fragments, ports...

Using the list
● We have a lot of options here

○ And you probably already have a favorite

● ffuf is good (https://github.com/ffuf/ffuf)
● Burp Suite's intruder (and turbo intruder) is good
● I have a few tools of my own too

○ meg, concurl, fff

https://github.com/ffuf/ffuf

Finding words unique to a target
● It can be useful to have a list of (mostly) target-specific words

○ But how are you supposed to know which ones they are?
○ You can't, but you can remove some of the ones that probably aren't!

● The HTML RFC is a handy reference :D

Tokenizing
● I have a silly little alpha-quality tool called tok for doing this

○ https://github.com/tomnomnom/hacks/tree/master/tok
○ You can use grep or whatever you want instead :)

● Make sure both lists are sorted and normalised

https://github.com/tomnomnom/hacks/tree/master/tok

Commparing
● The comm tool compares sorted files

○ The options are a little confusing though

● A little manual curation to remove junk can be useful :)

Fetch all the things
● I've found it useful to fetch lots of URLs for analysis
● You can extract parts of the responses to generate lists
● JavaScript files are especially helpful

○ You can use html-tool (https://github.com/tomnomnom/hacks/tree/master/html-tool) to extract
script src values

○ Then fetch the JS files and tokenize them :)
○ Super handy for path guessing, and guessing API methods too

Custom but generic
● Target-specific lists can be very useful

○ But there's lots they don't find

● Lots of people like to hunt on multiple targets at once
● It'd still be nice to have good wordlists

○ Especially if they include something that public lists do not

● Sometimes you want a list for a specific vulnerability or piece of software

Writing Big Queries
● WARNING: doing some of the things in the next few slides can cost you

not-insignificant amounts of money
○ BigQuery does have some free usage included, but it's easy to go over that

● Google's BigQuery has some useful datasets
○ bigquery-public-data.github_repos is a favourite of mine
○ There's an httparchive dataset too but it might cost you > $30 per query depending on what

you use it for

Finding paths
● You can match file contents to get a list of paths directly

○ This one is a bit expensive because it reads file contents

● Use the "Save to Google Drive" option to get up to 1GB of results

Using paths to find things instead
● The files table is smaller than the contents table so let's stick to that one
● Let's build a wordlist for the infamous nginx "off-by-slash" issue
● We need both the repo name and the path to the file:

The bug

https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf

https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf

The results
● The results file looks like this:

What are we supposed to do with that?!

<3 GitHub
● You can fetch files straight from raw.githubusercontent.com :)

○ Please use rate-limiting!*

*Please don't hate me, GitHub UwU

Processing the files
● If you were going to do this properly you'd want to parse the config files
● I'm going to hack it with grep and awk (:

○ For my purposes it doesn't have to be perfect, only good enough

Data cleaning
● This approach can leave you with messy data
● It's a good idea to clean it

○ Simple shell tools like grep, awk, and sed are super handy
○ Don't be afraid to do stuff manually in your editor though!

More files
● This technique extends to many other files with common names

○ robots.txt
○ .gitignore
○ Makefile
○ Rakefile
○ Fakefile

That last one is fake.

Thank you!
● Remember:

○ Keep a manually-curated list for things you read about or happen upon manually
○ Target-specific word lists will help you discover things that generic wordlists cannot
○ Google dorking is fun
○ Set billing limits in BigQuery!

● And most of all:
○ Stay safe and have fun :)

