Who, What, Where, When,
Wordlist

@ TomNomNom

What's a wordlist?

o |t's... Alist of words.
e Usually used for brute-forcing® something

*Yes | am using this term incorrectly (:

Why are they useful?

e \We could check all the combinations

e That would take a really long time
o >4 years to cover [a-zA-Z_-[{6} if you can somehow maintain 500 requests per second

e \Wordlists exist to save time and resources :)

Yes | really am explaining what wordlists are.

Where can they be used?

Subdomain enumeration
Path guessing
Authentication guessing
APl method guessing
Parameter guessing
Header guessing

...you get the point.

Don't worry, it's going to get better soon...

Pre-baked lists

e https://qithub.com/danielmiessler/SecLists
o Well organised
o Well-known for a reason :)
e https://qithub.com/qgooagle/fuzzing/tree/master/dictionaries

o Google's fuzzing dictionaries
o Need a bit of prep if they're not in the format you need

e Others:

o https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
o [usr/share/dict/words (:

e There's more scattered all over the internet...

You know how to use Google, right?

https://github.com/danielmiessler/SecLists
https://github.com/google/fuzzing/tree/master/dictionaries
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

So what's the problem?

e These wordlists are awesome
e They are genuinely useful
e PBut:

o Everyone uses them
o They're generally generic
o They're often very large* (we're trying to save time and resources, remember?)

*Like me.

Custom lists

e You need custom wordlists if you want to find things others don't

e Every target has things specific to them
o Generic wordlists probably won't contain TargetName_SuperHappyAPIDocs

e Specific use-cases call for specific wordlists
o No point using a subdomain list when you're guessing headers*

*Well, probably anyway.

Manually curated

My most used word-list was hand-writt” \wtyped

It's not very big

But it's very useful

| add to it when | read about something interesting

I'm sure you can figure this one out

Target-specific lists

e You will need:
o Aneed
o Asource of data
o Away to process the data
o Away to use the wordlist

e Let's look at path-guessing as an example

No sticky-backed plastic required.

Getting path data

We want lots of URLs for the target

Your Burp Suite history is a good source
o Target tab > Site map -> Right click a host -> 'Copy URLs in this host'

Google dorks are handy but can be a bit tedious - | have a trick for that ;)
gau (https://github.com/Ic/gau) to get URLs from the Wayback Machine etc
Sitemaps

Remember to include paths from all of your target's domains!
o Sometimes a boring path on one host is an interesting path on another :)

Running out of snarky comments, sorry.

https://github.com/lc/gau

Google dorking

e Demo time :)

Hope it goes OK!

Processing path data

e |like unfurl (: (https://github.com/tomnomnom/unfurl)

~p gau example.net | unfurl -u paths
/~susan/wiki/
/~susan/xprof.css
/~susan/xprofile.rdf
J=lser/
/~user/friends.rdf
/~user/image.gif>
/~user/plog.py
/~user/test/admin.cgi
/~username/
/~username%c2%a0%c2%a0

https://github.com/tomnomnom/unfurl

Extract all the parts

e Using complete paths can be fast, but it will miss things

e Pull the paths apart for greatest effect
o Then re-combine them recursively :)

~p sed 's#/#\n#g' paths.txt | sort -u
me
mel.jpg
~meauthor
media
mein_kunden_verzeichnis
member .php
members
mike.html
misc.php
mission_statement.html

While we're here...

e Unfurl can extract lots of other things for you too
o Query string keys and values, domains, fragments, ports...

~p gau example.net | unfurl -u keys
more
page
var
adjustment
apparel
behavior
amp
anger
foo

Using the list

e \We have a /ot of options here
o And you probably already have a favorite

e ffufis good (https://github.com/ffuf/ffuf)
e Burp Suite's intruder (and turbo intruder) is good

e | have a few tools of my own too
o meg, concurl, fff

~p ffuf -w paths.txt -u https://example.net/FUZZ

E g
A Ay
NN e A T TR A
AR A/ U

AR T T
\ /_/

_\
/_/

= =

\ N / \

N
i

https://github.com/ffuf/ffuf

Finding words unique to a target

e It can be useful to have a list of (mostly) target-specific words
o But how are you supposed to know which ones they are?
o You can't, but you can remove some of the ones that probably aren't!

e The HTML RFC is a handy reference :D

~/nahamcomp curl https://tools.ietf.org/html/rfc1866 -o rfc.html
~/nahamcomp curl https://uk.yahoo.com/ -o yahoo.html

Tokenizing

e | have a silly little alpha-quality tool called tok for doing this
o https://qithub.com/tomnomnom/hacks/tree/master/tok
o You can use grep or whatever you want instead :)

e Make sure both lists are sorted and normalised

~/nahamcomp cat rfc.html | tok | tr '[:upper:]' '[:lower:]' | sort -u > rfc-words
~/nahamcomp- cat yahoo.html | tok | tr '[:upper:]' '[:lower:]"' | sort -u > yahoo-words

https://github.com/tomnomnom/hacks/tree/master/tok

Commparing

e The comm tool compares sorted files
o The options are a little confusing though

e Alittle manual curation to remove junk can be useful :)

-1 suppress column 1 (lines unique to FILE1)
-2 suppress column 2 (lines unique to FILE2)
-3 suppress column 3 (lines that appear in both files)

~/nahamcomp- comm -13 rfc-words yahoo-words
yaftmaxscroll
yaftmodule
yaftpreprocess
yaftresults
yaftscrollcounter
yaftscrollingtimer
yaftscrollingtimerdelay
yahoo
yahootrafficserver

Fetch all the things

e I've found it useful to fetch lots of URLs for analysis
e You can extract parts of the responses to generate lists

e JavaScript files are especially helpful

o You can use html-tool (https://github.com/tomnomnom/hacks/tree/master/html-tool) to extract
script src values

o Then fetch the JS files and tokenize them :)

o Super handy for path guessing, and guessing APl methods too

~/nahamcomp gau yahoo.com | head -n 1000 | fff -s 200 -s 404 --output yahoo

~/nahamcomp find yahoo/ -type f -name '*.body' | html-tool attribs src | grep '\.js$'

Custom but generic

e Target-specific lists can be very useful
o Butthere's lots they don't find

e Lots of people like to hunt on multiple targets at once

e It'd still be nice to have good wordlists
o Especially if they include something that public lists do not

e Sometimes you want a list for a specific vulnerability or piece of software

Writing Big Queries

© : doing some of the things in the next few slides can cost you

not-insignificant amounts of money
o BigQuery does have some free usage included, but it's easy to go over that

e Google's BigQuery has some useful datasets
o bigquery-public-data.github_repos is a favourite of mine
o There's an httparchive dataset too but it might cost you > $30 per query depending on what
you use it for

Finding paths

e You can match file contents to get a list of paths directly
o This one is a bit expensive because it reads file contents

e Use the "Save to Google Drive" option to get up to 1GB of results

SELECT
path
FROM “bigquery-public-data.github repos.contents™ as contents
JOIN "bigquery-public-data.github repos.files as files on files.id = contents.id

WHERE REGEXP_ CONTAINS(content, r"phpinfo()")

This query will process 2.5 TB when run. 0

Save Query Results

Choose where to save the results data from the query. CSV (Google Drive) Save up to 1 GB of result.. ~

CANCEL SAVE

Using paths to find things instead

e The files table is smaller than the contents table so let's stick to that one
e Let's build a wordlist for the infamous nginx "off-by-slash" issue
e \We need both the repo name and the path to the file:

select
repo name,
path

from bigquery-public-data.github repos.files
where path like '%nginx%.conf"

The bug

Nginx off-by-slash fail

http://127.0.0.1/static../settings.py

location /static {
alias /home/app/static/;
}

Nginx matches the rule and appends the remainder to destination
/home/app/static/../settings.py

https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf

https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf

The results

e The results file looks like this:

~/nahamcomp head nginx-files.csv
repo_name,path
RealVNC/yocto_imx6sabreauto_meta-openembedded,meta-webserver/recipes-httpd/nginx/files/nginx.conf
RealVNC/yocto_imx6sabreauto_meta-openembedded,meta-webserver/recipes-httpd/nginx/files/nginx-volatile.conf
poldracklab/mriqcwebapi,dockereve-master/nginx/nginx.conf
CaptTofu/packetbeat-deploy,roles/kibana/templates/kibana.nginx.conf
BioSin/gelato-test-assignment,vagrant/nginx/app.conf
liuzheng712/webTeX,nginx.conf
heiglandreas/callingallpapers-api, .docker/nginx/app.conf
witlox/dcs,controller/nginx.conf
denfil/miniflux,docker/etc/nginx/nginx.conf

What are we supposed to do with that?!

<3 GitHub

e You can fetch files straight from raw.githubusercontent.com :)
o Please use rate-limiting!*

~/nahamcomp awk -F',' '{print "https://raw.githubusercontent.com/" $1 "/master/" $2}' nginx-files.csv

~/nahamcomp- cat nginx-urls.txt | fff -s 200 -o nginx-configs -d 5000

*Please don't hate me, GitHub UwU

Processing the files

e If you were going to do this properly you'd want to parse the config files
e [|I'm going to hack it with grep and awk (:
o For my purposes it doesn't have to be perfect, only good enough

~/nahamcom/nginx-configsp grep -hri alias -B3 | grep -ioE 'location /[a-z0-9/._-1+[A/] {'

location /static {
location /favicon.ico {
location /favicon.ico {
location /media {
location /static {
location /static {
location /media {
location /static {
location /content {
location /media {

Data cleaning

This approach can leave you with messy data

It's a good idea to clean it
o Simple shell tools like grep, awk, and sed are super handy
o Don't be afraid to do stuff manually in your editor though!

~/nahamcomp- awk '{print $2}' alias-locations.txt | grep -v "\.'

/assets

/content

/devbox

/events

/gzip-static
/gzip-static-proxy-cache
/img

/1ib

/media

/rtldemo

/static
/static/assets/compressed

| sort -u

More files

e This technique extends to many other files with common names
robots.txt

.gitignore

Makefile

Rakefile

Fakefile

@)

O O O O

That last one is fake.

Thank you!

e Remember:
o Keep a manually-curated list for things you read about or happen upon manually
o Target-specific word lists will help you discover things that generic wordlists cannot
o Google dorking is fun
o Set billing limits in BigQuery!

e And most of all:
o Stay safe and have fun :)

