
Network Fundamentals
From Zero to HTTP

One To One
● Two machines can talk to each other
● Each machine has a network interface
● Network interfaces can be connected directly to each other via network cable
● Each network interface has a Media Access Control (MAC) address (AKA

hardware address)
● MAC addresses look like this: 50:46:5d:54:94:23
● MAC addresses are globally unique (at least in theory)
● Data is sent in chunks called ‘frames’
● Each frame has a source and destination MAC address

How Do They Know The Destination MAC Address?
● They don’t!
● They do know the IP address though (because you tell them it)
● An IPv4 address looks like this: 192.168.0.1

○ There’s IPv6 too, but we won’t be covering it here

● A machine can ask the whole network who has a particular IP
● Machines ignore frames that don’t have their MAC as the destination
● But there’s a special ‘anyone’ or ‘broadcast’ MAC: ff:ff:ff:ff:ff:ff

Getting Your Network Interface Info
▶ ifconfig enp3s0
enp3s0 Link encap:Ethernet HWaddr 50:46:5d:54:94:23
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::5246:5dff:fe54:9423/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:48241295 errors:0 dropped:0 overruns:0 frame:0
 TX packets:24083899 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:49741929087 (49.7 GB) TX bytes:2925004440 (2.9 GB)

▶ ip a show dev enp3s0
2: enp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 50:46:5d:54:94:23 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.30/24 brd 192.168.1.255 scope global enp3s0
 valid_lft forever preferred_lft forever
 inet6 fe80::5246:5dff:fe54:9423/64 scope link
 valid_lft forever preferred_lft forever

Is Anybody There?
● Machine A wants to talk to Machine B
● Machine A has IP 192.168.0.1 and MAC aa:aa:aa:aa:aa:aa
● Machine B has IP 192.168.0.2 and MAC bb:bb:bb:bb:bb:bb
● Machine A sends a frame like this:

○ Source MAC: aa:aa:aa:aa:aa:aa
○ Destination MAC: ff:ff:ff:ff:ff:ff
○ Data: “Who has 192.168.0.2? Tell 192.168.0.1!”

● Machine B responds with a frame like this:
○ Source MAC: bb:bb:bb:bb:bb:bb
○ Destination MAC: aa:aa:aa:aa:aa:aa
○ Data: “192.168.0.2 is at bb:bb:bb:bb:bb:bb!”

● Both machines store the IPs and corresponding MACs in their Address
Resolution Protocol (ARP) cache for future use

Address Resolution Protocol

The Next Message
● Machine A wants to talk to Machine B again
● This time Machine A can find the MAC address in its ARP cache
● Machine A sends a frame that looks like this:

○ Source MAC: aa:aa:aa:aa:aa:aa
○ Destination MAC: bb:bb:bb:bb:bb:bb
○ Data: …

● Inside the data is an IP ‘packet’, which looks like this:
○ Source IP: 192.168.0.1
○ Destination IP: 192.168.0.2
○ Data: …

● The data in the last slide was actually an ARP Packet
● Why a MAC and an IP?

○ Machines can have more than one IP address… And other reasons too

The ARP Cache

Seeing Your ARP Cache
▶ ip n
192.168.1.170 dev enp3s0 lladdr 00:17:88:49:a0:62 STALE
192.168.1.138 dev enp3s0 lladdr 94:44:44:ed:f5:c8 STALE
192.168.1.114 dev enp3s0 lladdr f4:5c:89:c1:ed:5f STALE
192.168.1.60 dev enp3s0 lladdr 00:18:a9:74:a5:88 STALE
192.168.1.1 dev enp3s0 lladdr 98:fc:11:85:74:6c REACHABLE
192.168.1.179 dev enp3s0 lladdr dc:3a:5e:5d:e0:9d STALE
192.168.1.163 dev enp3s0 lladdr 70:48:0f:c9:19:42 STALE
192.168.1.23 dev enp3s0 lladdr 38:ea:a7:a9:34:f3 STALE
192.168.1.134 dev enp3s0 lladdr 8c:f5:a3:30:af:a7 STALE
192.168.1.10 dev enp3s0 lladdr 44:d9:e7:62:ab:cc REACHABLE

More Than Two Machines
● More than two machines can be connected to a hub
● A hub is pretty dumb
● It just sends everything it receives back out to all ports
● Machines ignore frames not intended for them so everything is (mostly) fine
● Everything that worked for two machines works exactly the same way
● But:

○ It’s slow (10Mbit, 100Mbit if you’re lucky)
○ You get collisions (machines trying to talk over each other)
○ We can do better

Hubs

Switching
● Network switches are smarter and more efficient
● Switches remember the source MACs they have seen on each port
● Frames are only sent to the port that a MAC is connected to
● If the switch doesn’t know where a MAC is: it sends to all ports

○ It never knows where ff:ff:ff:ff:ff:ff is so that always goes to all ports!

● Fewer collisions!
● Much faster!

○ 10Gbit is fairly common in switched networks

Switches

Subnets
● Machines can only directly send IP packets to machines on the same network
● Sooo… How do we define what a network (technically a sub-network) is?
● As well as an IP, each machine has a subnet mask

○ They look like this: 255.255.255.0

● The subnet mask is used in combination with a source and destination IP to
decide if they are on the same subnet or not

● It’s actually much easier to understand in binary!

Subnet Masks
● Two machines are on the same subnet if the bits in their IPs match where the

corresponding bit in the subnet mask is a 1

These two are on the same subnet:
 Source: 192.168.0.1 11000000.10101000.00000000.00000001
 Destination: 192.168.0.2 11000000.10101000.00000000.00000010
 Subnet Mask: 255.255.255.0 11111111.11111111.11111111.00000000

These two are on different subnets:
 Source: 192.168.0.1 11000000.10101000.00000000.00000001
 Destination: 192.168.31.2 11000000.10101000.00011111.00000010
 Subnet Mask: 255.255.255.0 11111111.11111111.11111111.00000000

CIDR Notation
● It gets a little tiresome specifying the IP and the subnet mask
● You can use Classless Inter-Domain Routing notation instead
● Count the number of 1s in the subnet mask!

10.0.0.1/255.255.255.0

00001010.00000000.00000000.00000001/11111111.11111111.11111111.00000000

10.0.0.1/24

Routing
● To send a packet to a machine on another subnet the frame is sent to a router
● A router usually has more than one network interface (and MAC address)
● A router always has more than one IP address (at least one per subnet)
● Machine A (subnet one):

○ MAC: aa:aa:aa:aa:aa:aa
○ IP: 192.168.0.1 / 255.255.255.0

● Machine B (subnet two):
○ MAC: bb:bb:bb:bb:bb:bb
○ IP: 192.168.1.1 / 255.255.255.0

● Router (both subnets):
○ MAC1: cc:cc:cc:cc:cc:cc
○ IP1: 192.168.0.254 / 255.255.255.0
○ MAC2: dd:dd:dd:dd:dd:dd
○ IP2: 192.168.1.254 / 255.255.255.0

An Example Hop
● Machine A wants to talk to machine B, but machine B is on a different subnet
● So it sends a frame using the MAC for its default gateway as the destination:

○ Source MAC: aa:aa:aa:aa:aa:aa
○ Destination MAC: cc:cc:cc:cc:cc:cc (the router’s first MAC!)
○ Source IP: 192.168.0.1
○ Destination IP: 192.168.1.1 (machine B’s IP!)

● Router receives the frame, and then sends:
○ Source MAC: dd:dd:dd:dd:dd:dd (the router’s second MAC)
○ Destination MAC: bb:bb:bb:bb:bb:bb
○ Source IP: 192.168.0.1
○ Destination IP: 192.168.1.1

● The router modified the source and destination MACs
● Machine B receives the frame from the router :)

A Hop

Multiple Choice
● Machine A sent the frame to its default gateway as a last resort
● It might have had another option in its routing table:

Network Subnet Mask Gateway

0.0.0.0 0.0.0.0 192.168.0.254

192.168.1.0 255.255.255.0 192.168.0.253

192.168.2.0 255.255.255.0 192.168.0.252

● With this table the MAC for 192.168.0.253 would have been the destination
● Multiple networks connected via routers form what we call the internet :)

The OSI Model

Name Unit What?

7 Application Data HTTP, FTP etc

6 Presentation Data Encryption! TLS etc

5 Session Data PPTP, SOCKS

4 Transport Segments TCP, UDP

3 Network Packets IP and routing

2 Data-Link Frames MAC addresses and the like

1 Physical Bits Electricity on a wire

The Internet Protocol Suite

Name Unit What?

4 Application Data HTTP, FTP etc

3 Transport Segments TCP, UDP

2 Internet Packets IP and routing

1 Link Frames MAC addresses and the like

● An alternate, and much more simple model
● Still just a model; not everything is so well-defined

Transport Control
● So far we’ve concerned ourselves only with one-way communication
● The network is unreliable, but we need reliable communication
● How do you know if someone got your letter?

○ Ask them to send you one back!
○ If you don’t get a response after a while, send another letter :)

● TCP provides reliability for IP packets
● TCP adds ports so that we can have more than one conversation going on

between two IPs
○ Ports are just numbers. You need a source port and a destination port

● If you don’t need the reliability that TCP provides you can use UDP

Let’s Talk TCP
Machine A Machine B

Hey, can we talk? → ...

... ← Sure.

OK! Let’s talk! → ...

So, can you do this thing for me? → ...

... ← Yes, I hear you.

... ← Here’s the thing you wanted.

Got it! → ...

... ← I’m leaving.

Fine! Me too! → ...

... ← Good.

The Real Version
192.168.0.1:56789 192.168.0.2:80

SYN → ...

... ← SYN, ACK

ACK → ...

DATA → ...

... ← ACK

... ← DATA

ACK → ...

... ← FIN

FIN, ACK → ...

... ← ACK

Retransmissions

192.168.0.1:56789 192.168.0.2:80

...handshake...

DATA → ...

... ← ACK

... ← DATA

...time passes...

... ← DATA

ACK → ...

...termination...

● If the sender doesn’t receive an ACK after a while it will resend the data

Skipping A Few Layers (for OSI at least)
● HTTP is an application layer protocol
● HTTP version 1.1 is just plaintext

○ So simple you can write it by hand!

● It might be encrypted with, say, TLS, but we’ll ignore that for now
● HTTP version 2 isn’t plaintext, but we’re going to ignore that too
● When we’re talking about an application layer protocol we can (mostly) ignore

the lower layers :)

Let’s Talk HTTP

192.168.0.1:56789 192.168.0.2:80

...handshake...

GET /index.html HTTP/1.1
Host: example.com
Connection: close
User-Agent: slidedeck/0.3
Accept: */*

→

...

...

←

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 1337

<!doctype html>
<html>
...

...termination...

The Request

What What?

GET /index.html HTTP/1.1 Get me the file at /index.html; I’m using HTTP version 1.1

Host: example.com The name of the host I’m connecting to is example.com

Connection: close Please close the TCP connection when you’ve sent me the data

User-Agent: slidedeck/0.3 Just FYI, my client software is slidedeck 0.3

Accept: */* I’ll accept any kind of data in response!

● Each line in the request is separated by a Carriage Return and a Line Feed
character (CRLF sequence)

● The request is terminated by two CRLF sequences
● Headers are sent in the form Key: value

The Response

What What?

HTTP/1.1 200 OK I’m using HTTP version 1.1; that request is OK!

Content-Type: text/html I’m going to send you some text that happens to be HTML

Content-Length: 1337 You’ll need to read 1337 bytes to get all of the response body

<!doctype html>
<html>
...

The response body

● The response headers are separated by CRLF sequences too
● The response body is separated from the headers by two CRLF sequences

What’s Your Name?
● We’ve been talking about IP addresses this whole time
● It’s easier to remember ‘example.com’ instead of ‘93.184.216.34’

○ And a lot easier than remembering ‘2606:2800:220:1:248:1893:25c8:1946’ :)

● The Domain Name System (DNS) translates names into IP addresses
● DNS uses UDP (most of the time)
● It usually listens on port 53
● Clients request records from DNS servers

Record Types (a non-exhaustive list)

Type Example What?

A 93.184.216.34 An IPv4 Address

AAAA 2606:2800:220:1:248:1893:25c8:1946 An IPv6 Address

CNAME origin.example.com An alias for another name

MX mail.example.com A mail exchange handler

NS ns1.webhost.com An authoritative nameserver

TXT Clacks-Overhead=GNU Terry Pratchett Some human-readable text

● There’s several different kinds of DNS record; each with a different purpose
● Each record is stored against a name like ‘example.com’

An Example Lookup

192.168.0.1:56789 8.8.8.8:53

Query: A example.com → ...

... ← Query: A example.com
Answer: A 93.184.216.34

● DNS queries use UDP, so there’s no handshake
● That also means it could be difficult to correlate requests and responses
● The response includes the query so the client knows what it’s a response to
● The request and response aren’t actually plaintext, but binary is hard to read

in examples

CNAMEs

192.168.0.1:56789 8.8.8.8:53

Query: A example.com → ...

... ← Query: A example.com
Answer: CNAME origin.example.com
Answer: CNAME webserver.example.com
Answer: A 93.184.216.34

● We need an IP address to make a connection to a host
● If there’s no A record for the name, but there is a CNAME record, the DNS

server will respond with the CNAME record, and the A record for that name if
one exists

Load Balancers
● One server is rarely enough to handle all of your traffic
● Load Balancers split incoming requests between multiple servers
● Some load balancers work at the Transport Layer (TCP etc)
● Others work at the Application Layer (HTTP etc)
● Transport Layer is ‘easier’ (i.e. requires less CPU time)
● Application Layer is more powerful

○ You can send requests to, say, a particular HTTP endpoint to a different pool of servers
○ You can respond to some requests without hitting a backend server at all

● Both kinds have multiple load balancing algorithms
○ Round Robin / Weighted Round Robin
○ Least Connections
○ Hashed on some property of the connection (e.g. source IP)
○ Random

Transport Layer Load Balancers
● All packets for a TCP session are sent to and from the same backend server
● Works for any backend service that uses TCP

○ That covers the vast majority of backend services
■ Web Servers
■ Database Servers
■ Internet-enabled Toasters

● Can work for UDP too, but the application layer protocol on top must be
stateless and/or you must use a hash-based load balancing algorithm

● No need to decrypt traffic in transit
● Requests can be split based only on Transport or Internet/Network level

details like source IP address
● Generally fairly limited in their capabilities

Application Layer Load Balancers
● They actually understand the application layer protocol (e.g. HTTP)
● That lets you do useful stuff like:

○ Split requests based on application layer details (e.g. HTTP path, query string, cookies)
○ Respond to some requests without hitting a backend server (e.g. redirecting HTTP to HTTPS)
○ Edge Side Includes (i.e. calling more than one backend server to form one response)
○ Block requests you suspect are malicious (e.g. HTTP request contains possible XSS payload)

● Takes a lot more processing power to run
● Usually made for only one protocol (e.g. an HTTP load balancer couldn’t

really do anything with MySQL connections)
● If you’re using an encrypted transport like TLS the load balancer must decrypt

incoming traffic before it can be processed
○ That means you’ve got to deploy your private keys to your load balancers
○ Sometimes you might need to re-encrypt afterwards (e.g. for cardholder data)

Network Address Translation (NAT)
● IPv4 space is limited - IPv4 addresses are 32 bit unsigned integers
● Max addresses: 4,294,967,295
● Subtracting the reserved ranges it’s actually only 3,702,258,430
● More than 7,607,000,000 people on earth as of March 2018
● How many internet connected devices do you own?

○ There was more than 30 devices on my home network last time I checked

● NAT is a solution to the IPv4 space problem, but also a good way to make
sure your network really is private too

○ E.g. private addresses can’t be routed to from the public internet unless you explicitly allow it

An Aside: Reserved IPv4 Space
● Private-use Ranges:

○ 10.0.0.0/8
○ 172.16.0.0/12
○ 192.168.0.0/16

● Local / loopback:
○ 127.0.0.0/8
○ 0.0.0.0/8

● And 10 or so more ranges reserved for a bunch of different reasons
○ E.g. documentation, broadcast ranges, ‘future use’

How To NAT
● Machine A (192.168.0.10) is on your network, behind NAT
● It wants to connect to Google’s DNS servers (8.8.8.8 port 53)
● Machine A sends a packet:

○ Source MAC: aa:aa:aa:aa:aa:aa
○ Dest MAC: cc:cc:cc:cc:cc:cc (the internal interface on the default gateway)
○ Source IP/port: 192.168.0.10:34567 (Machine A’s IP)
○ Dest IP/port: 8.8.8.8:53

● The default gateway receives the packet and rewrites the source IP/port
before sending it on:

○ Source IP/port: 62.52.42.32:45678 (The gateway’s public IP)
○ Dest IP/port: 8.8.8.8:53

● The translation is recorded so that return traffic can have its destination IP
and port translated

