Network Fundamentals
From Zero to HTTP

One To One

e Two machines can talk to each other

e Each machine has a network interface

e Network interfaces can be connected directly to each other via network cable

e Each network interface has a Media Access Control (MAC) address (AKA
hardware address)

e MAC addresses look like this: 50:46:5d:54:94:23

e MAC addresses are globally unique (at least in theory)

e Data is sent in chunks called ‘frames’

e Each frame has a source and destination MAC address

How Do They Know The Destination MAC Address?

e They don!
e They do know the /P address though (because you tell them it)
e An IPv4 address looks like this: 192.168.0.1

o There’s IPv6 too, but we won'’t be covering it here
e A machine can ask the whole network who has a particular IP
e Machines ignore frames that don’t have their MAC as the destination
e But there’s a special ‘anyone’ or ‘broadcast’ MAC: ft:ff:ff.ff:ff.ff

Getting Your Network Interface Info

B ifconfig enp3s0
enp3s0 Link encap:Ethernet HWaddr 50:46:5d:54:94:23
inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::5246:5dff:fe54:9423/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:48241295 errors:0 dropped:0 overruns:0 frame:0
TX packets:24083899 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:49741929087 (49.7 GB) TX bytes:2925004440 (2.9 GB)

B ip a show dev enp3s0
2: enp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default glen 1000
link/ether 50:46:5d:54:94:23 brd ff:ff:ff.ff.ff.ff
inet 192.168.1.30/24 brd 192.168.1.255 scope global enp3s0
valid_1ft forever preferred_lft forever
inet6 fe80::5246:5dff:fe54:9423/64 scope link
valid_1ft forever preferred_lft forever

Is Anybody There?

Machine A wants to talk to Machine B
Machine A has IP 192.168.0.1 and MAC aa:aa:aa:aa:aa:aa
Machine B has IP 192.168.0.2 and MAC bb:bb:bb:bb:bb:bb

Machine A sends a frame like this:

o Source MAC: aa:aa:aa:aa:aa:aa

o Destination MAC.: ff:ff.ff.ff.ff.ff

o Data: “Who has 192.168.0.27 Tell 192.168.0.1!”
e Machine B responds with a frame like this:
o Source MAC: bb:bb:bb:bb:bb:bb
o Destination MAC: aa:aa:aa:aa:aa:aa
o Data: “192.168.0.2 is at bb:bb:bb:bb:bb:bb!”

e Both machines store the IPs and corresponding MACs in their Address
Resolution Protocol (ARP) cache for future use

Address Resolution Protocol

=l

A

FRAME
FROM: AA:AA:AA: AA:AA:AA
TO: FF:FF:FF FF.FF.FF

DAT A “wHo HAS FMIGRI0R 2

Tew 492Mcg 08! "
_

FrRaMme

FROM:
TO:

—

L

| =
AA:AA:A!fal:AA:AA @ ot

DAT A . ‘UG \s AT ’ 5

The Next Message

e Machine A wants to talk to Machine B again
e This time Machine A can find the MAC address in its ARP cache

e Machine A sends a frame that looks like this:
o Source MAC: aa:aa:aa:aa:aa:aa
o Destination MAC: bb:bb:bb:bb:bb:bb
o Data: ...
e Inside the data is an IP ‘packet’, which looks like this:
o Source IP: 192.168.0.1
o Destination IP: 192.168.0.2
o Data: ...

e The data in the last slide was actually an ARP Packet
e Why a MAC and an IP?

o Machines can have more than one IP address... And other reasons too

The ARP Cache

A

=

FrRAME

FROM: AA:AA:AA: AA:AA:AA

TO:

PACKET

TO:
DATA

FRoM: |92.168.0. |

=

Seeing Your ARP Cache
B ipn

192.168.1.170 dev enp3s0 lladdr 00:17:88:49:a0:62 STALE
192.168.1.138 dev enp3s0 lladdr 94:44:44:ed:f5:c8 STALE
192.168.1.114 dev enp3s0 lladdr f4:5c:89:c1:ed:5f STALE
192.168.1.60 dev enp3s0 lladdr 00:18:a9:74:a5:88 STALE
192.168.1.1 dev enp3s0 lladdr 98:fc:11:85:74:6c REACHABLE
192.168.1.179 dev enp3s0 lladdr dc:3a:5e:5d:e0:9d STALE
192.168.1.163 dev enp3s0 lladdr 70:48:0f:c9:19:42 STALE
192.168.1.23 dev enp3s0 lladdr 38:ea:a7:a9:34:f3 STALE
192.168.1.134 dev enp3s0 lladdr 8c:f5:a3:30:af:a7 STALE
192.168.1.10 dev enp3s0 lladdr 44:d9:e7:62:ab:cc REACHABLE

More Than Two Machines

More than two machines can be connected to a hub

A hub is pretty dumb

It just sends everything it receives back out to all ports

Machines ignore frames not intended for them so everything is (mostly) fine
Everything that worked for two machines works exactly the same way

But:
o It's slow (10Mbit, 100Mbit if you're lucky)
o You get collisions (machines trying to talk over each other)
o We can do better

Hubs

HUB

Switching

Network switches are smarter and more efficient

Switches remember the source MACs they have seen on each port
Frames are only sent to the port that a MAC is connected to

If the switch doesn’t know where a MAC is: it sends to all ports

o It never knows where ff:ff:ff:ff:ff:ff is so that always goes to all ports!
Fewer collisions!

Much faster!
o 10Gbit is fairly common in switched networks

Switches

SWITCH

Subnets

e Machines can only directly send IP packets to machines on the same network
e S000... How do we define what a network (technically a sub-network) is?

e As well as an IP, each machine has a subnet mask
o They look like this: 255.255.255.0

e The subnet mask is used in combination with a source and destination IP to
decide if they are on the same subnet or not
e |[t's actually much easier to understand in binary!

Subnet Masks

e Two machines are on the same subnet if the bits in their IPs match where the
corresponding bit in the subnet mask is a 1

These two are on the same subnet:
Source: 192.168.0.1 11000000.10101000.00000000.00000001
Destination: 192.168.0.2 11000000.10101000.00000000.00000010
Subnet Mask: 255.255.255.0 11111111.11111111.11111111.00000000

These two are on different subnets:
Source: 192.168.0.1 11000000.10101000.000 .00000001
Destination: 192.168.31.2 11000000.10101000.000 .00000010
Subnet Mask: 255.255.255.0 11111111.11111111.111 .00000000

CIDR Notation

e It gets a little tiresome specifying the IP and the subnet mask
e You can use Classless Inter-Domain Routing notation instead
e Count the number of 1s in the subnet mask!

10.0.0.1/ .0
00001010.00000000.00000000.00000001/ .00000000

10.0.0.1/

Routing

To send a packet to a machine on another subnet the frame is sent to a router
A router usually has more than one network interface (and MAC address)
A router always has more than one IP address (at least one per subnet)

Machine A (subnet one):

o MAC: aa:aa:aa:aa:aa:aa
o 1P:192.168.0.1/255.255.255.0

e Machine B (subnet two):

o MAC: bb:bb:bb:bb:bb:bb
o IP:192.168.1.1/255.255.255.0

e Router (both subnets):

o MACH1: cc:cc:cc:cc.cc:.ce
o 1P1:192.168.0.254 /] 255.255.255.0
o MAC2: dd:dd:dd:dd:dd:dd

o IP2:192.168.1.254 |/ 255.255.255.0

An Example Hop

e Machine A wants to talk to machine B, but machine B is on a different subnet

e So it sends a frame using the MAC for its default gateway as the destination:
o Source MAC: aa:aa:aa:aa:aa:aa
o Destination MAC: cc:cc:cc:cc:cc:cc (the router’s first MAC!)
o Source IP: 192.168.0.1
o Destination IP: 192.168.1.1 (machine B'’s IP!)

e Router receives the frame, and then sends:

Source MAC: dd:dd:dd:dd:dd:dd (the router’'s second MAC)
Destination MAC: bb:bb:bb:bb:bb:bb

Source |IP: 192.168.0.1

o Destination IP: 192.168.1.1

e The router modified the source and destination MACs
e Machine B receives the frame from the router :)

O O O

A Hop

/

7

v

/7

FRAME

FRoM : AA:AA:AA:AA:AA:AA
T 0.¢C:cELEcceice

-y PACkeT
’ FRom: 4192 .16%.0:1

TO:.

I
@

7

7

RouTeR |@
I

-
-~

FRAME

—

TO:

PACKeET
FRoM: 192 .16%.0:1

TO.

Multiple Choice

e Machine A sent the frame to its default gateway as a last resort
e It might have had another option in its routing table:

Network Subnet Mask Gateway
0.0.0.0 0.0.0.0 192.168.0.254
.................... 1921681025525525501921680253
.................... 1921682025525525501921680252

e With this table the MAC for 192.168.0.253 would have been the destination
e Multiple networks connected via routers form what we call the internet :)

The OSI| Model

Name Unit What?

7 Application Data HTTP, FTP etc
6 Presentatlo nD ata Encryptl 0 n|-|-|_SetC ..
5 S eSSIonData PPTPSOCKS ..
4Transport SegmentSTCPUDP ...
3 NetworkPaCketS Ipandrou“ng ..
2 Data_LmkFrameS MAcaddressesandthe“ke ..

1 Physical Bits Electricity on a wire

The Internet Protocol Suite

e An alternate, and much more simple model
e Still just a model; not everything is so well-defined

Name Unit What?

4 Application Data HTTP, FTP etc
3-|-ransp0rt SegmentSTCPUDP ...
2 |ntemetpacket3 |pandroutmg ..

1 Link Frames MAC addresses and the like

Transport Control

e So far we've concerned ourselves only with one-way communication
e The network is unreliable, but we need reliable communication

e How do you know if someone got your letter?
o Ask them to send you one back!
o If you don'’t get a response after a while, send another letter :)

e TCP provides reliability for IP packets
e TCP adds ports so that we can have more than one conversation going on

between two IPs
o Ports are just numbers. You need a source port and a destination port

e If you don’t need the reliability that TCP provides you can use UDP

Let's Talk TCP

Machine A Machine B
Hey, can we talk? —
.. (_ Sure
OK|Letsta|k' .. _) ..
......... S OcanyOUdOthISthmgforme?_)
.. (_ YeSIhearyou
.. (_ Heresthethmgyouwanted
................................. G Otlt'_)
.. (_ |m|eavmg
.......................... Fme|Metoo'_)

The Real Version

192.168.0.1:56789 192.168.0.2:80
SYN —
.. (_ SYNACK
.................................. A CK_)
................................. DATA_)
.. (_ ACK
.. (_ DATA
.................................. A CK_)
.. (_ FIN
.............................. FINACK-}

Retransmissions

e If the sender doesn’t receive an ACK after a while it will resend the data

192.168.0.1:56789 192.168.0.2:80
...handshake...
................................. DATA_)
.. (_ ACK
... D ATA

Skipping A Few Layers (for OSI at least)

e HTTP is an application layer protocol

e HTTP version 1.1 is just plaintext
o So simple you can write it by hand!

e It might be encrypted with, say, TLS, but we’ll ignore that for now

e HTTP version 2 isn’t plaintext, but we're going to ignore that too

e When we’re talking about an application layer protocol we can (mostly) ignore
the lower layers :)

Let's Talk HTTP

192.168.0.1:56789 192.168.0.2:80

...handshake...

...termination...

The Request

e Each line in the request is separated by a Carriage Return and a Line Feed
character (CRLF sequence)

e The request is terminated by two CRLF sequences

e Headers are sent in the form Key: value

What What?

GET /index.html HTTP/1.1 Get me the file at /index.html; I'm using HTTP version 1.1
Hostexample Com Thename Ofthehost |mConnectlngt0|sexamp|ecom
: Con nect lon . C lose PI ease Close theTCPCOh neCtlon : W henyouve Sent me th e data
: US e r _Agent . S llde d eCk/O 3 Just FY | myC“ent Soﬁware : IS S“d edec k : 03 ...

The Response

e The response headers are separated by CRLF sequences too
e The response body is separated from the headers by two CRLF sequences

What What?

HTTP/1.1 200 OK I’'m using HTTP version 1.1; that request is OK!
Content_TypeteXt/html |mgo mgtosendyou Some teXtth athappens tObeHTML
Content_Length1337 You”needto read1337bytes to geta” oftheresponsebOdy
<|doctypehtml> TheresponsebOdy ..

<html>

What's Your Name?

e \We've been talking about IP addresses this whole time

It's easier to remember ‘example.com’ instead of ‘93.184.216.34’
o And a /ot easier than remembering 2606:2800:220:1:248:1893:25c8:1946’ :)

The Domain Name System (DNS) translates names into IP addresses
DNS uses UDP (most of the time)

It usually listens on port 53

Clients request records from DNS servers

Record Types (a nhon-exhaustive list)

e There’s several different kinds of DNS record; each with a different purpose
e Each record is stored against a name like ‘example.com’

Type Example What?

A 93.184.216.34 An IPv4 Address
AAAA 2606 2800 2201 248 1893 25C8 1946 AanV6 Address ..
CNAME orlglnexample Com .. An a“asforanOthername ..
MX mall example Com ... A ma" eXChangehandler ...
NS ns 1webho stco m ... An aUth ontatlve nameserver

An Example Lookup

DNS queries use UDP, so there’s no handshake

That also means it could be difficult to correlate requests and responses
The response includes the query so the client knows what it's a response to
The request and response aren’t actually plaintext, but binary is hard to read

in examples

192.168.0.1:56789 8.8.8.8:53

Query: A example.com —

Query: A example.com
. Answer: A 93.184.216.34

CNAMEs

e \We need an IP address to make a connection to a host

e |[fthere’s no A record for the name, but there is a CNAME record, the DNS
server will respond with the CNAME record, and the A record for that name if
one exists

192.168.0.1:56789 8.8.8.8:53

Query: A example.com —
— Query: A example.com
Answer: CNAME origin.example.com
Answer: CNAME webserver.example.com
Answer: A 93.184.216.34

L oad Balancers

One server is rarely enough to handle all of your traffic

Load Balancers split incoming requests between multiple servers
Some load balancers work at the Transport Layer (TCP etc)
Others work at the Application Layer (HTTP etc)

Transport Layer is ‘easier’ (i.e. requires less CPU time)

Application Layer is more powerful
o You can send requests to, say, a particular HTTP endpoint to a different pool of servers
o You can respond to some requests without hitting a backend server at all
Both kinds have multiple load balancing algorithms
o Round Robin / Weighted Round Robin
o Least Connections
o Hashed on some property of the connection (e.g. source IP)
o Random

Transport Layer Load Balancers

e All packets for a TCP session are sent to and from the same backend server

e \Works for any backend service that uses TCP
o That covers the vast majority of backend services
m Web Servers
m Database Servers
m Internet-enabled Toasters

e Can work for UDP too, but the application layer protocol on top must be
stateless and/or you must use a hash-based load balancing algorithm

e No need to decrypt traffic in transit

e Requests can be split based only on Transport or Internet/Network level
details like source IP address

e Generally fairly limited in their capabilities

Application Layer Load Balancers

e They actually understand the application layer protocol (e.g. HTTP)

e That lets you do useful stuff like:

Split requests based on application layer details (e.g. HTTP path, query string, cookies)
Respond to some requests without hitting a backend server (e.g. redirecting HTTP to HTTPS)
Edge Side Includes (i.e. calling more than one backend server to form one response)

Block requests you suspect are malicious (e.g. HTTP request contains possible XSS payload)

e Takes a lot more processing power to run

e Usually made for only one protocol (e.g. an HTTP load balancer couldn’t
really do anything with MySQL connections)

e If you're using an encrypted transport like TLS the load balancer must decrypt

incoming traffic before it can be processed

o That means you’ve got to deploy your private keys to your load balancers
o Sometimes you might need to re-encrypt afterwards (e.g. for cardholder data)

(@)

(@)

(@)

(@)

Network Address Translation (NAT)

IPv4 space is limited - IPv4 addresses are 32 bit unsigned integers
Max addresses: 4,294 967,295

Subtracting the reserved ranges it's actually only 3,702,258,430
More than 7,607,000,000 people on earth as of March 2018

How many internet connected devices do you own?

o There was more than 30 devices on my home network last time | checked
NAT is a solution to the IPv4 space problem, but also a good way to make

sure your network really is private too
o E.g. private addresses can’t be routed to from the public internet unless you explicitly allow it

An Aside: Reserved IPv4 Space

e Private-use Ranges:
o 10.0.0.0/8
o 172.16.0.0/12
o 192.168.0.0/16
e Local/loopback:
o 127.0.0.0/8
o 0.0.0.0/8
e And 10 or so more ranges reserved for a bunch of different reasons
o E.g. documentation, broadcast ranges, ‘future use’

How To NAT

e Machine A (192.168.0.10) is on your network, behind NAT
e It wants to connect to Google’'s DNS servers (8.8.8.8 port 53)

e Machine A sends a packet:

o Source MAC: aa:aa:aa:aa:aa:aa

o Dest MAC: cc:cc:cc:cc:cc:cc (the internal interface on the default gateway)
o Source IP/port: 192.168.0.10:34567 (Machine A’s IP)

o Dest IP/port: 8.8.8.8:53

e The default gateway receives the packet and rewrites the source IP/port

before sending it on:
o Source IP/port: 62.52.42.32:45678 (The gateway’s public IP)
o Dest IP/port: 8.8.8.8:53

e The translation is recorded so that return traffic can have its destination |P
and port translated

