W

a

JSLUIC

There’s Gold In Them Thar Files!

Presented by: Tom Hudson, Senior Security Engineer, Bishop Fox | Date: 2023-06-24

Hello, BSides :)

4+ I’'m Tom(NomNom)
4 It’s been a while! Hello! &
4+ | make open-source tools (gron, anew, meg, fff, unfurl, gf, waybackurls, httprobe, assetfinder, gsrepla...
4 | like questions, so have ‘em ready!
4 1 do security tooling R&D stuff at Bishop Fox

— That means this slide-deck is branded and in light-mode

- ...and also lacks legally-questionable use of watermarked stock photography

© Bishop Fox. All rights reserved worldwide.

Crawling Used To Be Easy

4 The Old Web was pretty easy to crawl
4 Links were links, marquees scrolled, and HTML was unsullied by JavaScript

4+ When JavaScript arrived it mostly made a trail of kitten gifs follow your cursor

Sign my guestbook!

© Bishop Fox. All rights reserved worldwide.

2001: A Cyberspace Odyssey

4+ In about 2001 JavaScript got a new superpower: XMLHttpRequest

— At the time you might have known it as: ActiveXObject("Microsoft.XMLHTTP")
4 Now JavaScript could fetch new data and stuff it into the page without a page reload
4 Fast-forward a couple of decades and we have ReangulariSQuery

A MSN.COM - Microsoft Internet Explorer
JEIe Edit View Favorites Tools Help |

J {Back v mp ~ @ ﬁ | @Searth []Favorites @3History | @v @ @‘ é¢

JAgdreSS I@ http:{{ www.msn.com LI PGo

_OVN\ e Get $10 off any purchase of $30 or more =
this holiday season at wine.com. NOVEMBER 28

Free download
MSN Messenger Service

olt kind Of
ot hear

Honestly, f

MESSAGE CENTER

magical o n " Saness Sofime Eam ks I Hotmai Member Name:
re\Oad "C\\CK Computing & Web Slide show: Hubble telescope images
the age Entertainment - Also toda ord:
every {ime ap San;:;‘s 4 - Top 10 tax deductions
ea

+ What manly men read
_ - Save: off-season travel
o - Take Barbie on a trip

P:
Changed Holiday Fun rew! @

Home & Loans ign up for free e-mail
Local Guides rew!

MSN Update

S
P
Se
Cr:
E
Cl

The shy
News vire man's
Personal Finance A o i ” 'd_
Radio & Video xiety_at social events uide

- Send a holiday e-card "r.

Research & School

Local Lookups

MSNBC News Yellow Pages

Hunary for freebies?
Done

© Bishop Fox. All rights reserved worldwide.

Dealing With The New Web

4 One way to deal with JavaScript is to use a (headless) browser — a sort of dynamic analysis
— It’s kinda slow and resource intensive
— You only find out about things that are actually executed

4 To do static analysis you could use regular expressions
— Something something, then you have two problems...

fetch('/api/v2/guestbook’, {
method: "POST", XM,
headers: {
"Content-Type": "application/json”
}s
body: JSON.stringify({msg: "..."})
})

© Bishop Fox. All rights reserved worldwide.

fetch' s 4 Modern

Irregularly Regular

4 Using regular expressions seems simple enough

4 You have to deal with nested and escaped quotes, differing whitespace, random variance etc
— At scale, edge-cases become commonplace

4 Running several-dozen complex regular expressions across multi-megabyte-files isn't great

— Maintaining several-dozen complex regular expressions is worse :(

‘/api/v2/guestbook' => /fetch\('([*"']+)"/
"/api/v2/guestbook"” => /fetch\(['"]([~""]+)["'"]/
"/api/user/o'neill" => /fetch\((['"])([~\1]+)\1/

Sonefrom

e, butits a

real regex for findS (2:"] " [\s) (((https?://[A-Za-z8-9_\-\.]+(:\d{1,5}) 2)+([\.1{1,2})?/[A-Za-28-9/\-_\.\\%]+([\? [#][*"" 1+)2) [((\.{1,2}/)?[a-
lJRLsinJaVaSC“p' zA-Z0-9\-_/\\%]+\. (aspx?|js(on|p)?|html|php5? |html|action|do) ([\?[#][*""']+)?) | ((\.{0,2}/)[a-zA-Z0B-9\-_/\\%]+(/|\\)[a-
zA-Z0-9\-_1{3, }([\? [#][*"| "1#)2) | ((\.{@,2})[a-2zA-Z0-9\-_/\\%]{3,}/)) (2:"]| " \s)

© Bishop Fox. All rights reserved worldwide. ‘

| stole thi

Context could be another name for an SMS scam &

4 Extracting URLs and paths by themselves is nice
4 Extracting the context around them is nicer

4 We can do that with the power of Tree-sitter (https://tree-sitter.github.io/tree-sitter/)

— Shout-out to @LewisArdern and @Semgrep for inspiration :)

fetch('/api/v2/guestbook’, {
method: "POST",
headers: {
"Content-Type": "application/json”
}s
body: JSON.stringify({msg: "..."})
})

© Bishop Fox. All rights reserved worldwide.

https://tree-sitter.github.io/tree-sitter/

SittingIn ATree: P,A,R,S,I,N, G

4 Raw JavaScript source code is difficult to understand for humans, doubly so for programs
4+ Tree-sitter parses JavaScript (and dozens of other languages) into syntax trees

— It's meant for tasks like syntax highlighting so it's tolerant of minor errors <3
4+ jsluice can show you the syntax tree for any JavaScript file

$ cat hello.js
console.log("Hello, world!")

$ jsluice tree hello.js
hello.js:
and jsluice Nas program
fnally showed UP ¢ expression_ statement
call expression
function: member_ expression
object: identifier (console)
property: property identifier (log)
arguments: arguments
string ("Hello, world!"™)

We're 8 slides in

© Bishop Fox. All rights reserved worldwide.

Meet jsluice: Extracting URLs

4+ There's a jsluice Go package, and also a command-line tool
— We're going to focus mainly on the command-line tool :)
4 The urls mode can extract URLs, paths, and (where possible) HTTP methods, headers, body data etc

— From calls to fetch, uses of XMLHttpRequest, assignments to document.location, calls to jQuery's
$.get, $.post, and $.ajax, and a handful of other places

$ jsluice urls fetch.js

"url”: "/api/v2/guestbook™,

"method": "POST", @ ﬁ

"headers": { S

Content-Type": "application/json
}s

"type": "fetch"

© Bishop Fox. All rights reserved worldwide.

XMLHttpRequest is tricksy

4+ XMLHttpRequest is especially annoying to deal with
— The data we want is spread out between multiple function calls
4+ Note that jsluice understands string concatenation :)

i {
function callAPI(method, callback){ “url": */api/EXPR?format=json”,
var xhr = new XMLHttpRequest(); "queryParams": ["format"]
xXhr.onreadystatechange = callback; query ' >

"method": "GET",

xhr.open('GET', '/api/' + method + '?format=json'); "headers": {

xhr.setRequestHeader('Accept', 'application/json');

"Accept”: "application/json",
if (window.env != 'prod'){ } YoEnvT: Tstaging
xhr.setRequestHeader('X-Env', 'staging') "%ype"* "XMLHttpRequest .open”
} : .
xhr.send();)

fT"XPR- is the defaylt
Placeholder, byt g,
can change it with

"Placeholder
© Bishop Fox. All rights reserved worldwide.

Secret Sauce

4+ Modern web apps talk to lots of APIs, run in The Cloud™, and need secrets for stuff like that
4 Sometimes those secrets end up in JavaScript files
4 You can find secrets with jsluice too!

$ jsluice secrets awskey.js

{
"kind": "AWSAccessKey",
"data": {
"key": "AKIAIOSFODNN7EXAMPLE",
"secret": "wJalrXUtnFEMI/K7MDENG/bPXRfiCYEXAMPLEKEY"
}s
"filename": "awskey.js",
"severity": "high",
"context": {
"awsKey": "AKIAIOSFODNN7EXAMPLE",
"awsSecret": "wJalrXUtnFEMI/K7MDENG/bPXRfiCYEXAMPLEKEY",
"bucket": "examplebucket",
"server": "someserver.example.com"
y } Look at that SWeet conteyt

that wag extracted)
© Bishop Fox. All rights reserved worldwide.

Custom Secrets

4 There are built-in matchers for AWS, GCP, GitHub, and a few other types of secrets
4 The internet is awash with different secrets types, and your target might use an obscure vendor
4 You can provide your own patterns in a JSON file :)

[$ jsluice secrets --patterns=custom.json firebase.js
{ {

"name": "genericSecret", "kind": "firebaseConfig",

"key": "(secret|private|apikey)", "data": {

"value": "[%a-zA-Z0-9+/]+" "apiKey": "AIzaSyB47WKzDu9kkmFAsAYFlagkuJxdEXAMPLE",
1, "appId": "1:586572527435:web:14c624679103dc3e74b755",
{ "authDomain": "someauthdomain.firebaseapp.com”,

"name": "firebaseConfig", "projectId": "someprojectid",

"object": ["storageBucket": "somebucketthatisnotthere.appspot.com"

{"key": "apiKey", "value": "~AIza.+"}, 1,
{"key": "storageBucket"} "filename": "firebase.js",

] "severity": "info",

} "context": null

]

sped! (
ake na
oo, fom
© Bishop Fox. All rights reserved worldwide. ‘

Queries

4 Tree-sitter is super cool, it has its own query language for querying syntax trees
4 The query mode lets you run queries, and massages the results into valid JSON
4 Use the tree mode we saw earlier to help you write queries

— Also the docs: https://tree-sitter.github.io/tree-sitter/using-parsers#query-syntax

$ jsluice query -q '(object) @m' fetch.js | jq

{
"body": "JSON.stringify({id: 123})",
"headers": {
"Content-Type": "application/json"
}s
"method": "POST"
}
{
"Content-Type": "application/json"
}
{
"id": 123
}

© Bishop Fox. All rights reserved worldwide.

https://tree-sitter.github.io/tree-sitter/using-parsers

A Neat Trick: Finding Common Keys

4 Need a word-list for the most common object keys?
4 Try out this one-liner :)

$ find . -type f -name '*.js' | # Find JavaScript files
jsluice query -q '(object) @m' | # Extract the objects
jq -r 'to_entries[] | .key' | # Extract the keys
sort | uniq -c | sort -nr # Sort and rank them

5 method

4 headers

3 url

3 server

3 secret

3 data

3 Content-Type

© Bishop Fox. All rights reserved worldwide.

Where Good Things Come

4 The command-line tool is nice, and you can use it for automation in shell scripts

4 But if you want to get serious, use the Go package...

analyzer := jsluice.NewAnalyzer(sourceCode)

analyzer.AddURLMatcher(
jsluice.URLMatcher{"string", func(n *jsluice.Node) *jsluice.URL {

val := n.DecodedString()
if !strings.HasPrefix(val, "mailto:") {
return nil

}

return &jsluice.URL{URL: val, Type: "mailto"}

3
)

for _, match := range analyzer.GetURLs() {
fmt.Println(match.URL)

}

© Bishop Fox. All rights reserved worldwide.

One Last One-liner

4+ Sometimes the most interesting things are in inline JavaScript
4+ Use htmlq to extract them, and some shell trickery to process them :)
— https://github.com/mgdm/htmlg

$ find . -type f -exec file {} \; | # Find files and check what type they are
grep 'HTML document' | # Take just the HTML files
cut -d: -f1 | # Remove everything after the filename
while read htmlfile; do # Loop over each filename

Use htmlg to extract inline JavaScript
jsluice secrets <(htmlg -f $htmlfile script --text)
done

© Bishop Fox. All rights reserved worldwide.

https://github.com/mgdm/htmlq

THANK YOU <3

Questions? :)

BISHOPFOX.COM

Presented by: Tom Hudson, Senior Security Engineer, Bishop Fox | Date: 2023-06-24

