
1

There’s Gold In Them Thar Files!

Presented by: Tom Hudson, Senior Security Engineer, Bishop Fox | Date: 2023-06-24

Hello, BSides :)

✦ I’m Tom(NomNom)
✦ It’s been a while! Hello! 👋
✦ I make open-source tools (gron, anew, meg, fff, unfurl, gf, waybackurls, httprobe, assetfinder, qsrepla…
✦ I like questions, so have ‘em ready!
✦ I do security tooling R&D stuff at Bishop Fox

⎻ That means this slide-deck is branded and in light-mode
⎻ …and also lacks legally-questionable use of watermarked stock photography

© Bishop Fox. All rights reserved worldwide. 2

J S L U I C E

The return of light-mode sheepy (:

Crawling Used To Be Easy

✦The Old Web was pretty easy to crawl
✦Links were links, marquees scrolled, and HTML was unsullied by JavaScript
✦When JavaScript arrived it mostly made a trail of kitten gifs follow your cursor

© Bishop Fox. All rights reserved worldwide. 3

J S L U I C E

Sign my guestbook!

A guestbook is like a comments section, but for your whole site

2001: A Cyberspace Odyssey

✦ In about 2001 JavaScript got a new superpower: XMLHttpRequest
⎻ At the time you might have known it as: ActiveXObject("Microsoft.XMLHTTP")

✦Now JavaScript could fetch new data and stuff it into the page without a page reload
✦Fast-forward a couple of decades and we have ReangularJSQuery

© Bishop Fox. All rights reserved worldwide. 4

J S L U I C E

Honestly, felt kind of

magical to not hear

the reload "click"

every time a page

changed

Dealing With The New Web

✦One way to deal with JavaScript is to use a (headless) browser – a sort of dynamic analysis
⎻ It’s kinda slow and resource intensive
⎻ You only find out about things that are actually executed

✦To do static analysis you could use regular expressions
⎻ Something something, then you have two problems…

© Bishop Fox. All rights reserved worldwide. 5

J S L U I C E

fetch('/api/v2/guestbook', {
method: "POST",
headers: {

"Content-Type": "application/json"
},
body: JSON.stringify({msg: "..."})

})

'fetch' is a modern alternative to XMLHttpRequest

Irregularly Regular

✦Using regular expressions seems simple enough
✦You have to deal with nested and escaped quotes, differing whitespace, random variance etc

⎻ At scale, edge-cases become commonplace
✦Running several-dozen complex regular expressions across multi-megabyte-files isn't great

⎻ Maintaining several-dozen complex regular expressions is worse :(

© Bishop Fox. All rights reserved worldwide. 6

J S L U I C E

'/api/v2/guestbook' => /fetch\('([^']+)'/
"/api/v2/guestbook" => /fetch\(['"]([^'"]+)['"]/
"/api/user/o'neill" => /fetch\((['"])([^\1]+)\1/

(?:"|'|\s)(((https?://[A-Za-z0-9_\-\.]+(:\d{1,5})?)+([\.]{1,2})?/[A-Za-z0-9/\-_\.\\%]+([\?|#][^"']+)?)|((\.{1,2}/)?[a-
zA-Z0-9\-_/\\%]+\.(aspx?|js(on|p)?|html|php5?|html|action|do)([\?|#][^"']+)?)|((\.{0,2}/)[a-zA-Z0-9\-_/\\%]+(/|\\)[a-

zA-Z0-9\-_]{3,}([\?|#][^"|']+)?)|((\.{0,2})[a-zA-Z0-9\-_/\\%]{3,}/))(?:"|'|\s)

I stole this one from

somewhere, but it's a

real regex for finding

URLs in JavaScript!

Context could be another name for an SMS scam 🤔

✦Extracting URLs and paths by themselves is nice
✦Extracting the context around them is nicer
✦We can do that with the power of Tree-sitter (https://tree-sitter.github.io/tree-sitter/)

⎻ Shout-out to @LewisArdern and @Semgrep for inspiration :)

© Bishop Fox. All rights reserved worldwide. 7

J S L U I C E

fetch('/api/v2/guestbook', {
method: "POST",
headers: {

"Content-Type": "application/json"
},
body: JSON.stringify({msg: "..."})

})

https://tree-sitter.github.io/tree-sitter/

Sitting In A Tree: P, A, R, S, I, N, G

✦Raw JavaScript source code is difficult to understand for humans, doubly so for programs
✦Tree-sitter parses JavaScript (and dozens of other languages) into syntax trees

⎻ It's meant for tasks like syntax highlighting so it's tolerant of minor errors <3
✦jsluice can show you the syntax tree for any JavaScript file

© Bishop Fox. All rights reserved worldwide. 8

J S L U I C E

$ cat hello.js
console.log("Hello, world!")

$ jsluice tree hello.js
hello.js:
program
expression_statement
call_expression
function: member_expression
object: identifier (console)
property: property_identifier (log)

arguments: arguments
string ("Hello, world!")

We're 8 slides in

and jsluice has

finally showed up (:

Meet jsluice: Extracting URLs

✦There's a jsluice Go package, and also a command-line tool
⎻ We're going to focus mainly on the command-line tool :)

✦The urls mode can extract URLs, paths, and (where possible) HTTP methods, headers, body data etc
⎻ From calls to fetch, uses of XMLHttpRequest, assignments to document.location, calls to jQuery's
$.get, $.post, and $.ajax, and a handful of other places

© Bishop Fox. All rights reserved worldwide. 9

J S L U I C E

$ jsluice urls fetch.js
{
"url": "/api/v2/guestbook",
"method": "POST",
"headers": {
"Content-Type": "application/json"

},
"type": "fetch"

}

jsluice outputs JSONLines; you might want to pipe it to jq :) 😍

XMLHttpRequest is tricksy

✦XMLHttpRequest is especially annoying to deal with
⎻ The data we want is spread out between multiple function calls

✦Note that jsluice understands string concatenation :)

© Bishop Fox. All rights reserved worldwide. 10

J S L U I C E

function callAPI(method, callback){
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = callback;
xhr.open('GET', '/api/' + method + '?format=json');
xhr.setRequestHeader('Accept', 'application/json');

if (window.env != 'prod'){
xhr.setRequestHeader('X-Env', 'staging')

}
xhr.send();

} 'EXPR' is the default placeholder, but you can change it with--placeholder

{
"url": "/api/EXPR?format=json",
"queryParams": ["format"],
"method": "GET",
"headers": {
"Accept": "application/json",
"X-Env": "staging"

},
"type": "XMLHttpRequest.open"

}

🤫

Secret Sauce

✦Modern web apps talk to lots of APIs, run in The Cloud™, and need secrets for stuff like that
✦Sometimes those secrets end up in JavaScript files
✦You can find secrets with jsluice too!

© Bishop Fox. All rights reserved worldwide.

J S L U I C E

Look at that sweet context that was extracted!

$ jsluice secrets awskey.js
{

"kind": "AWSAccessKey",
"data": {

"key": "AKIAIOSFODNN7EXAMPLE",
"secret": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

},
"filename": "awskey.js",
"severity": "high",
"context": {

"awsKey": "AKIAIOSFODNN7EXAMPLE",
"awsSecret": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
"bucket": "examplebucket",
"server": "someserver.example.com"

}
}

11

Custom Secrets

✦There are built-in matchers for AWS, GCP, GitHub, and a few other types of secrets
✦The internet is awash with different secrets types, and your target might use an obscure vendor
✦You can provide your own patterns in a JSON file :)

© Bishop Fox. All rights reserved worldwide.

J S L U I C E

You can specify a severity

too, to make triage easier

[
{

"name": "genericSecret",
"key": "(secret|private|apikey)",
"value": "[%a-zA-Z0-9+/]+"

},
{

"name": "firebaseConfig",
"object": [

{"key": "apiKey", "value": "^AIza.+"},
{"key": "storageBucket"}

]
}

]

12

$ jsluice secrets --patterns=custom.json firebase.js
{

"kind": "firebaseConfig",
"data": {

"apiKey": "AIzaSyB47WKzDu9kkmFAsAYFlagkuJxdEXAMPLE",
"appId": "1:586572527435:web:14c624679103dc3e74b755",
"authDomain": "someauthdomain.firebaseapp.com",
"projectId": "someprojectid",
"storageBucket": "somebucketthatisnotthere.appspot.com"

},
"filename": "firebase.js",
"severity": "info",
"context": null

}

Queries

✦Tree-sitter is super cool, it has its own query language for querying syntax trees
✦The query mode lets you run queries, and massages the results into valid JSON
✦Use the tree mode we saw earlier to help you write queries

⎻ Also the docs: https://tree-sitter.github.io/tree-sitter/using-parsers#query-syntax

© Bishop Fox. All rights reserved worldwide.

J S L U I C E

If jsluice
can't convert

something directly to

JSON it makes it a string

13

$ jsluice query -q '(object) @m' fetch.js | jq
{

"body": "JSON.stringify({id: 123})",
"headers": {

"Content-Type": "application/json"
},
"method": "POST"

}
{

"Content-Type": "application/json"
}
{

"id": 123
}

https://tree-sitter.github.io/tree-sitter/using-parsers

A Neat Trick: Finding Common Keys

✦Need a word-list for the most common object keys?
✦Try out this one-liner :)

© Bishop Fox. All rights reserved worldwide.

J S L U I C E

14

$ find . -type f -name '*.js' | # Find JavaScript files
jsluice query -q '(object) @m' | # Extract the objects
jq -r 'to_entries[] | .key' | # Extract the keys
sort | uniq -c | sort –nr # Sort and rank them

5 method
4 headers
3 url
3 server
3 secret
3 data
3 Content-Type
...

Maybe my testdata directory
doesn't make for the most

representative object keys (:

Where Good Things Come

✦The command-line tool is nice, and you can use it for automation in shell scripts
✦But if you want to get serious, use the Go package…

© Bishop Fox. All rights reserved worldwide.

J S L U I C E

15

analyzer := jsluice.NewAnalyzer(sourceCode)

analyzer.AddURLMatcher(
jsluice.URLMatcher{"string", func(n *jsluice.Node) *jsluice.URL {

val := n.DecodedString()
if !strings.HasPrefix(val, "mailto:") {

return nil
}

return &jsluice.URL{URL: val, Type: "mailto"}
}},

)

for _, match := range analyzer.GetURLs() {
fmt.Println(match.URL)

}

You can make custom

matchers using the full

power of Tree-sitter :)

One Last One-liner

✦Sometimes the most interesting things are in inline JavaScript
✦Use htmlq to extract them, and some shell trickery to process them :)

⎻ https://github.com/mgdm/htmlq

© Bishop Fox. All rights reserved worldwide.

J S L U I C E

16

$ find . -type f -exec file {} \; | # Find files and check what type they are
grep 'HTML document' | # Take just the HTML files
cut -d: -f1 | # Remove everything after the filename
while read htmlfile; do # Loop over each filename
Use htmlq to extract inline JavaScript
jsluice secrets <(htmlq -f $htmlfile script --text)

done
Maybe jsluice will get native

support for HTML files soon :)

https://github.com/mgdm/htmlq

17

THANK YOU <3
B ISHOPFOX .COM

Questions? :)

Presented by: Tom Hudson, Senior Security Engineer, Bishop Fox | Date: 2023-06-24

