
Bug Bounties With Bash
TomNomNom

Me
● Security Researcher @ Detectify
● @TomNomNom online
● Mediocre bug hunter
● This is adapted from a workshop at BSides Leeds

Obligatory Disclaimer
● The Computer Misuse Act (or your country's equivalent) is serious business
● Don’t do things unless you have explicit permission
● I am not your supervisor

Bash
● Bash is a shell
● A shell wraps the kernel so you can launch processes
● ...it’s a botany metaphor!
● There are other shells…

○ zsh
○ fish
○ ksh
○ explorer.exe…

● I like bash :)

Bug Bounties and Bash?
● Why not?
● There are many purpose-made security tools that nearly do what you want
● Sometimes you just have to make tools

Y u no gui?
● GUIs are nice
● They provide better discoverability
● But if they don’t support your use case you’re SOOL (:

Bash Basics
● This is the bit where I run some commands in a terminal and you all say

“oooh!” and “aaah!” like you’re impressed.
● ...seriously, I could really use the ego boost.

Some Core Utils
● grep - search for patterns in files or stdin
● sed - edit the input stream
● awk - general purpose text-processing language
● cat - concatenate files
● find - list files recursively and apply filters
● sort - sort the lines from stdin
● uniq - remove duplicate lines from stdin
● xargs - run a command using each line from stdin as an argument
● tee - copy stdin to a file and to the screen

IO Streams
● A linux process has three standard streams:

○ stdin (file descriptor 0)
○ stdout (file descriptor 1)
○ stderr (file descriptor 2)

● stdin defaults to your keyboard
● stdout and stderr default to your screen
● You can redirect the standard streams

○ ‘< file’ connects a file to stdin
○ ‘> file’ redirects stdout to a file
○ ‘2> file’ redirects stderr to a file
○ ‘&> file’ redirects stdout and stderr to a file
○ ‘2>&1’ redirects stderr to stdout!

● Demo time...

Subshell Tricks
● <(cmd) - returns the output of ‘cmd’ as a file descriptor

○ Handy if you want to diff the output of two commands…
○ diff <(cmd-one) <(cmd-two)

● $(cmd) - returns the output text of ‘cmd’
○ Handy if you want to store the command output in a variable
○ myvar=$(cmd)

Enumerating Subdomains
● We could use external services

○ hackertarget.com
○ crt.sh
○ certspotter.com

● But it’s nice to complement that with good-old brute force
● You will need:

○ A target
○ A wordlist
○ Bash :)

Does it resolve? Only humans know for sure

Enter Exit Codes

Conditionals

Demo Time
● Yay! Demo time!

Command Oriented Programming

Tidying It Up A Little

Loops

More Demo Time
● I love demo time (:

Looping Over stdin

Putting It Together

If you liked it you shoulda put a .sh on it

I Like It Generic

Permissions

Dangling CNAMEs

The Plan
● Check subdomains for CNAME records
● Check if those CNAMEs resolve
● ...profit?
● Demo time :)

Getting the CNAMEs

Incase That Demo Went Badly...

Fetch All The Things
● Having lots of targets to look at can be overwhelming
● Dddddddemo time

A Thing To Fetch All The Things

Finding Things In The Output

Some Things To Grep For
● Titles
● Server headers
● Known ‘subdomain takeover’ strings
● URLs (and then go and fetch the URLs!)

○ JavaScript files are nice (:

● Secrets
● Error messages
● File upload forms
● Interesting Base64 encoded strings ;)

○ (eyJ|YTo|Tzo|PD[89])

● Demo time, obv.

When In Doubt: Use Your Eyes
● Deeeeeeeemo time
● It’s demo time
● Time for a demo
● I like demos :)

Speeding Things Up
● Pipes give you some parallelisation for free

○ It’s not enough though, is it?

● xargs can run things in parallel…
● Let’s speed up our subdomain brute-forcer
● What time is it?

○ It’s demo time.

A Bit Of A Mess

A Little Cleaner

Bits And Bobs
● Use dtach for long-running tasks
● vim is a major part of my workflow
● When things get complex, consider a different language…

○ I like Go :)
○ Check out meg, comb, unfurl, waybackurls, gf, httprobe, concurl...

