Bug Bounties With Bash

TomNomNom

\Y[5

Security Researcher @ Detectify
@TomNomNom online

Mediocre bug hunter

This is adapted from a workshop at BSides Leeds

Obligatory Disclaimer

e The Computer Misuse Act (or your country's equivalent) is serious business
e Don’t do things unless you have explicit permission
e | am not your supervisor

Bash

Bash is a shell
A shell wraps the kernel so you can launch processes
...it's a botany metaphor!

There are other shells...
o zsh
o fish
o ksh
o explorer.exe...

e |like bash:)

Bug Bounties and Bash?

e \Why not?
e There are many purpose-made security tools that nearly do what you want
e Sometimes you just have to make tools

Y u no gui?

e GUls are nice
e They provide better discoverability
e But if they don’t support your use case you're SOOL (:

Bash Basics

e This is the bit where | run some commands in a terminal and you all say
“‘oooh!” and “aaah!” like you're impressed.
e ...seriously, | could really use the ego boost.

Some Core Utils

grep - search for patterns in files or stdin

sed - edit the input stream

awk - general purpose text-processing language

cat - concatenate files

find - list files recursively and apply filters

sort - sort the lines from stdin

uniq - remove duplicate lines from stdin

xargs - run a command using each line from stdin as an argument
tee - copy stdin to a file and to the screen

|O Streams

A linux process has three standard streams:
o stdin (file descriptor 0)
o stdout (file descriptor 1)
o stderr (file descriptor 2)

stdin defaults to your keyboard
stdout and stderr default to your screen

You can redirect the standard streams
o ‘<file’ connects a file to stdin

> file’ redirects stdout to a file

‘2> file’ redirects stderr to a file

‘&> file’ redirects stdout and stderr to a file

‘2>&1’ redirects stderr to stdout!

Demo time...

O O O O

Subshell Tricks

e <(cmd) - returns the output of ‘cmd’ as a file descriptor
o Handy if you want to diff the output of two commands...
o diff <(cmd-one) <(cmd-two)

e $(cmd) - returns the output text of ‘cmd’

Handy if you want to store the command output in a variable

O
o myvar=$(cmd)

Enumerating Subdomains

e \We could use external services

o hackertarget.com
o crt.sh
o certspotter.com

e But it's nice to complement that with good-old brute force

e You will need:
o Atarget

o Awordlist
o Bash:)

Does it resolve? Only humans know for sure

host example.com

example.com has address 93.184.216.34

example.com has IPv6 address 2606:2800:220:1:248:1893:25c8:1946
host lolwtfamidoing.com

Host lolwtfamidoing.com not found: 3(NXDOMAIN)

Enter Exit Codes

host example.com
example.com has address 93.184.216.34
example.com has IPv6 address 2606:2800:220:1:248:1893:25c8:1946
echo $?
0
host lolwtfamidoing.com
Host lolwtfamidoing.com not found: 3(NXDOMAIN)
echo $?

1

Conditionals

lolsh (~) - VIM

buffers

1 #!/bin/bash

2

3 if this-command-works: then
4 run-this-command

5 I&
6 i

L

NORMAL lol.sh sh 100% = 6/6 § : 1
"lol.sh" 6L, 66C written

Demo Time

e Yay! Demo time!

Command Oriented Programming

Terminal

if host example.com; then echo "IT RESOLVES \o/"; fi
example.com has address 93.184.216.34
example.com has IPv6 address 2606:2800:220:1:248:1893:25c8:1946
IT RESOLVES \o/

if host lolwtfamidoing.com; then echo "IT RESOLVES \o/"; fi
Host lolwtfamidoing.com not found: 3(NXDOMAIN)

Tidying It Up A Little

if host example.com &> /dev/null; then echo "IT RESOLVES!"™; fi
IT RESOLVES!
if host lolwtfamidoing.com &> /dev/null; then echo "IT RESOLVES!"; fi

Loops

lolsh (~) - VIM

[10l.5h 3 buffers

1 #!/bin/bash

2

3 while this-command-works:; do
this-command

one

4
5
6

d
i

NORMAL lol.sh sh 100% = 6/6 § : 1
"lol.sh" 6L, 65C written

More Demo Time

e |love demo time (:

Looping Over stdin

Terminal

while read sub; do echo "$sub.example.com"; done < subdomains.txt

www . example. com
m.example.com
test.example.com
staging.example.com
admin.example.com
cms.example.com
blog.example.com

Putting It Together

llllllll - o @
while read sub; do if host "$sub.example.com" &> /dev/null; then echo
"$sub.example.com”; fi; done < subdomains.txt
www . example.com

This is getting messy :/

If you liked it you shoulda put a .sh on it

lolsh (~) - VIM

buffers

1 #!/bin/bash
2
3 while read sub; do
if host "$sub.example.com" &> /dev/null; then
echo "$sub.example.com"
fi
one < subdomains.txt

o~ OouUul B

d
[1

NORMAL lol.sh sh 100% = 8/8 § : 1
"lol.sh" 8L, 144C

| Like It Generic

lolsh (~) - VIM

buffers

1 #!/bin/bash
2
3 domain=%$1
4 while read sub; do
if host "$sub.$domain" &> /dev/null; then
echo "$sub.$domain"
fi
one

O 00 N O U

d
i

NORMAL lol.sh sh 100% = 9/9 k : 1
Alilognt Sl sie

Permissions

lolsh (~) - VIM

mv lol.sh subs.sh
./subs.sh example.com < subdomains.txt
-bash: ./subs.sh: Permission denied
- chmod +x subs.sh
» ./subs.sh example.com < subdomains.txt
www . example.com
~p cat subdomains.txt | ./subs.sh example.net
www . example.net

Dangling CNAMEs

host invalid.sbtuk.net
Host invalid.sbtuk.net not found: 3(NXDOMAIN)
host -t CNAME invalid.sbtuk.net
invalid.sbtuk.net is an alias for lolifyouregisteredthisyouwastedyourmoney.com.
> host lolifyouregisteredthisyouwastedyourmoney.com
Host lolifyouregisteredthisyouwastedyourmoney.com not found: 3(NXDOMAIN)

The Plan

Check subdomains for CNAME records
Check if those CNAMESs resolve
...profit?

Demo time ;)

Getting the CNAMEs

host -t CNAME invalid.sbtuk.net | grep 'alias for'
invalid.sbtuk.net 1is an lolifyouregisteredthisyouwastedyourmoney.com.
host -t CNAME invalid.sbtuk.net | grep 'is an al' | awk '{print $NF}'
lolifyouregisteredthisyouwastedyourmoney.com.

toLsh (=) - VIM - o0 ®

Incase That Demo Went Badly...

check-cnames.sh (~) - VIM

buffers

1 #!/bin/bash

2

3 domain=$1

4 while read sub; do

5 host -t CNAME "$sub.$domain" | grep 'alias for' | awk '{print $NF}' |
6 while read cname; do

7/ if ! host "$cname" &> /dev/null; then

8 echo "$cname doesn't resolve ($sub.$domain)"

NORMAL check-cnames.sh sh 100% = 12712 | : 1
"check-cnames.sh" 12L, 270C written

Fetch All The Things

e Having lots of targets to look at can be overwhelming
e Dddddddemo time

A Thing To Fetch All The Things

Fetch.sh (~/bsides) - VIM

index > buffers

1 #!/bin/bash
2

mkdir -p out

filename=$(echo "$url"” | md5sum | awk '{print $1}')
filename="out/$filename"

3

4

5 while read url; do

6

7/

8 curl -sk "$url" -o "$filename" &> /dev/null

9 echo "$filename $url" >> index

10 done

11 B

NORMAL fetch.sh sh 100% = 11/11 § : 1

"fetch.sh" 11L, 220C written

Finding Things In The Output

Fetch.sh (~/bsides) - VIM

./fetch.sh < urls
grep -HnroiE '<title>(.*)</title>'

cat index
out/d3397772b65f89f729c434637946caf8 http://example.com
out/cec0c034699dabe9891744f12fd63379 https://example.net
out/639c2c4f448073d571a5135fbc1a0339 https://www.google.com
out/56a6e4a8b88694e855ec457024babb4e https://bbc.co.uk

Some Things To Grep For

Titles
Server headers

Known ‘subdomain takeover’ strings
URLSs (and then go and fetch the URLSs!)

o JavaScript files are nice (:
Secrets

Error messages
File upload forms

Interesting Base64 encoded strings ;)
o (eyJ|YTo|Tzo|PD[89])
e Demo time, obv.

When In Doubt: Use Your Eyes

Deeeeeeeemo time
It's demo time

Time for a demo

| like demos :)

Speeding Things Up

e Pipes give you some parallelisation for free
o It's not enough though, is it?

e Xxargs can run things in parallel...

e Let's speed up our subdomain brute-forcer

e \Whattime is it?
o It's demo time.

A Bit Of A Mess
pa FSub; sh+ . buffe rs

1 #!/bin/bash

2

3 domain=%$1

4 xargs -P1 -n1 -I{} bash -c "

5 if host \"{}.%$domain\" &> /dev/null; then
6 echo \"{}.%$domain\"

7/ fi

g

ol

NORMAL parsub.sh[+] sh

A Little Cleaner
S5 5 Ui e

1 #!/bin/bash

2 domain=%1

3 if host "$domain" &> /dev/null; then
4 echo "$domain"

5 [

L

~

sub.sh sh 20% = 1/5 % : 1
1 #!/bin/bash

2 domain=%$1

3 xargs -P10 -n1 -I{} ./sub.sh "{}.$domain"

4 i
NORMAL parsub.sh sh 100% = 4/4 § : 1

SsubrisnE RSN 811C

Bits And Bobs

e Use dtach for long-running tasks
e vim is a major part of my workflow

e \When things get complex, consider a different language...

o |like Go:)
o Check out meg, comb, unfurl, waybackurls, gf, httprobe, concurl...

